Category Archives: Chemistry

Reverse Osmosis System Installation

At some point in your brewing career you are going to become interested in taking your water chemistry to the next level.  As part of that, you might come to the realization that you want to improve the quality of your water and stop using the water from a garden hose or you might want to cut down on the inconvenience of having to go to the store to get your water.

Difficulty: level_3

If you have made it this far, please continue.

Time Required

A few hours to a day depending on how expansive you wish to make your system.

Cost

$150-400, dependent on how complex you want to make it and how much capacity you want.  After it was all completed, I had close to $300 in my system.

Background

When I started brewing, I was buying Ice Mountain brand spring water from the grocery.  In my opinion it was the best tasting water, so I used that for my brewing water.  I then started dabbling in water chemistry, so I got an inline charcoal filter for my home water and got a WARD labs test done and used those results as absolute fact.  It is well known that the water in Indianapolis is extremely hard.

The WARD lab report showed a TDS value of 501 and a Total Hardness of 334. Of note, I submitted two samples and the charcoal filter did nothing for any of the measured levels in the water.  I was naive and assumed that it would.  They really just filter the chlorine in the water.

I still would in most cases split my home water with a 50:50 mix of Ice Mountain and my home water.  Of course my desire to simplify my process, I wanted to take one less trip to the grocery store out of my brew day prep.

I had mostly decided to take the leap of installing an RO system.  It was then one day having a conversation with a neighbor who works for the Indianapolis Water Company that cinched it.  He was talking about the variety of sources for water that are available to Indianapolis Water and that those sources change often, even daily.

Well, I might as well throw my water report out in the trash right?

One thing I value in my process is repeatability.  I don’t want to brew a batch of beer one time, then brew it again a year or so later and have it be completely different.  One variable I can control is the water used in my beer.

The best way to do that is to strip the water down to nothing, then rebuild it with mineral additions.  One could argue that this is more complicated than just buying your water from the grocery store or the tap.  Sure, but I heard in one podcast, paying attention to your water is the difference between a beer scoring 30 and one scoring 40.  Plus, now that I’ve got my mineral additions routine worked out, it’s really like weighing out your hops, so no big deal.

This post will show

  1. The basics of an RO (Reverse Osmosis) system
  2. Some of the considerations when choosing a system
  3. A brief explanation of how they work
  4. How I chose to install my system

If you enjoy this post, please consider supporting this site by clicking on and purchasing products through the affiliate links in this post and on this website.

Basics of an RO system and what I chose

Filtration
Generally the filters are contained in one assembly.  I’ve seen anywhere from 3 to 7 stage filters.  The system I chose was a 5 stage.  It seemed to be the most common and my most important criteria was that I would be able to get replacement filters easily and economically.  I didn’t want to have a $45 filter that would have to be replaced every 6 months.
Holding tank
These come in various sizes.  The purpose of the tank is to store water for on-demand usage.  With a limited flow rate for the filters to do a good job, you can’t just keep the faucet going non-stop.  My system is rated at 75 gallons per day, which is just over 3 gallons per hour or just under 6 ounces per minute.  Keep in mind that the size of the tank dictates how much water you can have on hand at any time.  Also the quoted size of the tank isn’t necessarily how much water you’ll have available either.  Mine is a 4 gallon tank that can hold 3.2 gallons.  I’ve seen a 14 gallon tank that holds 10.7 and a 20 gallon that holds 14 gallons.
Faucet
Pretty self-explanatory.  You need some way to get the RO water.
Tubing
There is pretty much a standard tubing size used for RO systems that appears to be the same as ice-maker tubing.  It comes in a variety of colors, which you can use to your advantage if you like to keep things organized and color-coded.

Considerations before purchase

  • Permanent or portable?  I had seen some of the portable systems and considered those, but since I was looking to spend a decent amount of money on an RO system, I figured I might as well enjoy the water beyond brew days and install a permanent system.
  • Number of filter stages (more is better??).  I chose a 5 stage system.  The more stages, presumably a greater filtration level.  My system quoted filtration down to 0.0001 microns.
  • Availability and cost of filter replacements.  Mine uses a standard size, but I’ve seen some that use smaller filters or larger capacity systems that use more expensive longer filters.
  • All-inclusive kit.  Most contain every component you need, but make sure you know what you are getting.  Some come with tubing, some don’t.  Mine was very complete with everything needed, except common tools.
  • Holding tank size.  Mine came with a 4 gallon (3.2 available), but I would prefer at least a 14 gallon that would have 10.7 gallons of RO water on hand at any point in time.  Only having 3.2 gallons available to dispense at a time, means that when preparing for a brew day, I must empty the tank twice to get enough water for my all-electric Brewer’s Edge Mash & Boil’s 4 gallon batch sizes.
  • Transparent filter cover for first stage.  I liked this feature in the one I purchased, because it allows me to see when the filter will turn from a new white color to brown and rusty or whatever it will turn to.
  • Daily throughput.  Again, decide what your needs are.  Ours is just for brewing and drinking water at two faucets.  75 gallons per day is completely sufficient for us.  If you are starting a nano-brewery, you’ll probably need more.

How they work

Essentially water comes in from the source, and goes through 3 pre-filters, then goes to the reverse osmosis membrane where the water is then split into waste water and RO water.  Finally, it then either goes straight out to the faucet or goes to the holding tank reservoir.

Stage 1 Sediment Filter (PP): Sediment filtration extracts suspended sediment, dirt, rust, silt and sand

Stage 2 Granulated Activated Carbon (GAC): pre-filter reduces and removes: chlorine, volatile organic compounds (V.O.C), pesticides, nitrates, herbicides, tastes, odor, and disinfection by-products (Chloramines, THM, TCE)

Stage 3 Carbon Block (CTO): pre-filter removes Chlorine, then reduces or entirely removes Pesticides, Nitrates, Herbicides, tastes, odor, and disinfection by-products (chloramines, THM, TCE), Volatile Organic Compounds (V.O.C).

Stage 4 Reverse Osmosis Membrane (RO): This semi permeable membrane filters and rejects tiny impurities down to 0.0001 of a micron removing impurities such as colloid, heavy metal, dissolved solids, germs and other harmful substances. Virtually only water molecules and dissolved oxygen can pass through the Reverse Osmosis Membrane. The rejected contaminants are flushed to drain. The good output is now essentially RO water!

It is important to note that part of an RO system involves some waste water.  I haven’t measured it, but I’ve seen quotations that for every one gallon of RO water, the system will have rejected about 2.5 gallons of waste.  If you live in an area where water conservation is at a premium, you need to take this into consideration.

ASO Valve: This is the rectangular piece shown.  It shuts the system off when the tank is full to conserve water.

Stage 5 Post Activated Carbon Filter (PA): Post Carbon Final polishing filter for taste and odor.  The final clean water will either go to the faucet for immediate usage or will go to the holding tank for future on-demand supply.

Tools/Materials Required

First off, the items required will depend on the RO system you select.  In general the following items will be helpful
  • Cordless drill
  • Mounting screws (may or may not come with your system)
  • Tube cutter
    • Optional, but makes things easier
    • This should be an essential part of your brewing toolkit anyway for cutting kegging and dispensing tubing
  • Water pressure gauge
  • Various RO couplers, Tee’s and valves
    •      
  • Label maker – if you want to place labels on the tubing as well
    • Great to have in the brewery anyway
  • Color coded tubing
  • Inline TDS meter (optional)
  • Additional faucet (optional)

My Installation

The first step in the instructions is to test the water pressure.  This system required an input pressure between 45-70 psi.  I measured mine somewhere in the mid-70’s at the time of installation.  A little on the high side, but ok to go.
Rather than install my RO system under the already overcrowded area under our kitchen sink, I decided to install ours in our garage.  The main benefits were that when I do go to change filters, it will be significantly easier to replace them when they are at chest height and any spilled water won’t be a big deal in the garage either.
I had to add an additional 2×4 to the wall to span 2 studs and provide a sturdy mounting surface for the filter array.  This also provided some additional space between the filters and the walls, which makes removing and reinstalling the filters much easier.
Plumbing Connections
First off is an explanation of how the push fit connections work in an RO system.  This video clearly shows what is happening inside the connector and demonstrates how easy they are to connect and disconnect.

It is recommended that if you have a water softener, to pull the RO system supply from the softened water, rather than your hard water.  The ion exchanged water coming from the water softener is apparently easier on the RO system than just plain hard water.  Fortunately, our laundry tub in the garage was already plumbed for soft water on the cold side, so I just had to tap into the supply.
My system also came with a feed water adapter, which made that easy.  It also has an on/off valve in case you want to service the RO system without turning water off to the house.  Fortunately, since my system came with color coded tubing, I was able to follow that scheme and just by looking at the hoses, I know each ones function.  BUT, because I like labels, among the RO water lines (blue), I added labels showing their destinations.  It just helps when needing to re-configure.
The other connection for the system is the waste water (black tubing), which requires drilling into your drain on your sink adding some foam and attaching a saddle connector.
Again, since it was in the garage, this was more accessible.
The last connection is the outlet.  This was the hardest part for me, since I decided to run a line to the sink in the kitchen.  I drilled a hole in the wall under our sink, which went to the crawlspace under our kitchen.  I then ran this line through our crawlspace on up to the kitchen sink.  The outlet also has branches to the ice maker for our garage fridge, an additional faucet on the laundry tub in our garage and a loose line that is used to fill my kettle (the whole point of this exercise).
For now, I pull out a longer extension for filling my kettle so I don’t have to move it once filled, but I’m considering going ahead and making that line permanent so that it’s one less thing I’m setting up.
picture of yellow line going to kettle – no picture yet
One of my favorite add-ons for my setup is the HM Digital DM-1 In-Line Dual TDS Monitor.  It is made specifically for RO systems to monitor the incoming TDS value and the outgoing TDS value.

Here is a diagram of my system.  You can see it has a few branches and valves to cut each section off.

System Performance
Right after installation, the manual recommends running a decent amount of water through the system to clear out any loose particulates in the filters.
Here is a graph showing the cycles of water after installation.  I basically let the system do it’s job filling the holding tank and drained it each hour and took readings.  After about 6 tanks (19 gallons) worth of water, I was down to 12 ppm!
I haven’t taken regular measurements, but here is a chart of the in/out over time since installation.  When I first bought the system, I was accepting that I would be replacing filter sets every year.  After seeing the measured performance of the system, I would say that after 2 years, there does not seem to be a noticeable difference in output, so I would consider the filters still operating properly.

Conclusion

I am extremely happy with the RO system as I have installed it.  I’ve switched to drinking RO water exclusively around the house.  I’d like to say that this has been able to shift my palette slightly in that I should be able to pick out more subtle differences in my beer.  That could just be in my head however.  The TDS readings over time have shown the system to be working as intended and I’m quite happy with the filter performance over the 2 years I’ve had it installed.
Other benefits
We now have RO in the kitchen, which besides clean tasting water, we use it exclusively for coffee and our electric tea kettle.  The added benefit is that we now do not have to deal with mineral and lime build up on the heating elements.
Also, my oldest daughter has been raising a Cape Sundew and a Venus Fly Trap on our kitchen windowsill, which are both carnivorous plants and they require RO water.  Ever since I’ve installed the system, these plants have flourshed.  These plants have also allowed us to make it through an entire summers with out any fruit fly break outs!
Of course while working in the garage, I now also get to have a fresh ice water composed of RO ice cubes and RO water.

Like this post?

Please support this site by clicking on and purchasing products through the affiliate links in this post and on this website.

Please also consider sharing on your favorite social hangout or making a small donation to help me purchase something to make another post.

Water, huh! What is it good for?

Water, huh!  What is it good for?

Difficulty: level_1

Time Required:

As long as it takes you to read this post.

Water:

Back in November, I had the opportunity to see John Palmer give a seminar on water at Great Fermentations.  He was essentially on tour to promote his new book he co-authored with Colin Kaminski simply called, Water.  So the day I went to the seminar, there were tornado warnings.  As I write this, all water outside is in the form of ice.  Hopefully we’re at the tail end of the “Polar Vortex”.  A theme of things spinning, kind of like your head when you learn about water.

This isn’t a review of the book, or an in depth look at the chemistry of water, but just some of my musings on the importance of water in brewing.  Water has to be one of the most intimidating, mysterious, confusing and scientific parts of brewing.  To the beginning brewer, learning about it could confuse them enough that they think they’ll never brew good beer.

As you would imagine, at the start of his presentation I was completely engaged in what he was saying.  He had some entertaining slides correlating Lego superheros to certain elements of water.  I was understanding what he was throwing down.  I saw some charts and graphs that I understood, as any self-respecting engineer should.  Then we got to the chemistry balancing equations.  That’s when my eyes start to gloss over.  I’m reminded of the time in college when my wife (then girlfriend) said to me”your math is hard, it has letters”.  She was with me at the seminar and was following for a while and then got lost.  I never really enjoyed chemical formulas and electron counting and balancing equations.

So is understanding water necessary?  Yes!
Is being a amateur chemist a requirement?  No!
Is there an in-between that will get me producing good beer with minimal knowledge?  Yes!

First order of business is to simplify the intimidation out of the whole water thing.

In my opinion, this should be your priority level as you progress.

Starting out (Extract recipes):

Just go with tap water or water from the grocery store (see note at the end of this section).  I always went with Ice Mountain spring water, simply because I could actually taste a difference in waters and I liked it the best.  During this stage, I was always on the hunt for the water to go on sale.  For some reason, the online ads for my local grocery stores would not mention when it was on sale, nor were the sales on water the same at each location.  My benchmark price was $1/gallon, so if I saw it for that price, I was essentially clearing the shelves like some mad extreme couponer.  When I was really lucky, I would find the 2.5 gallon containers on sale and reduce the amount of plastic I was discarding each brew session.  I’ve never used just straight tap water, but I’ve tasted beers from people who’ve made beer with unadulterated city tap water and never had any complaints.  DO NOT however use softened water.

At this stage, don’t worry about treating the water.  Just brew and try to work on all of your other techniques.

*Recent reading/listening I have been doing indicates that with extract brewing, you might actually be better off with reverse osmosis (RO) or distilled water.  The theory is that the maltster making the extract has already created the proper water profile.  When the extract is concentrated, the water goes away, but the minerals are still there, so when you are adding it to your water, you are then getting those minerals in your brewing water.  This is backed up in a recent BeerSmith podcast with Colin Kaminsky and John Palmer.

Beer Brewing Water with John Palmer and Colin Kaminski – BeerSmith Podcast #70

Intermediate (Extract with steeping grains or all-grain):

This is where you want, at minimum, some sort of pH adjustment.  I use and recommend food-grade phosphoric acid.  Your LHBS should have it available, typically in 75-85% strength (ie 75% acid, 25% water).  I get it in a 4 fl.oz. container, which at an average of approximately 1 tsp per 5 gallon batch, it is good for about 24 batches.  FYI, I’m still learning and tuning my adjustments.  The much maligned colorpfast strips should suit you just fine at this stage.  Unless you just want to spring for the electronic pH meter.  As much as I love the gadgets, I opted for the strips first and have only recently purchased a pH meter.

Some details that emerged as I got more into water adjustments:

  1. Yes the colorphast strips are off by some amount (reports up to 0.3 pH) and the judging of color feels like you are being subjective, but they served me well and in my experience are very close to the digital pH meter.
  2. The most accepted method is to measure the pH of the mash about 20 minutes after dough-in, but remarkably, the amount of acid I was adding was within some small percentage of what I was adding when I was (incorrectly) measuring pH with the room temp water before heating up to strike temp.  Oh, well. Dumb luck, considering I now know that your malt bill works in conjunction with the water chemistry to alter pH.
  3. I am currently into evaluating different water chemistry spreadsheets to see which ones are most accurate at prediction.  Some of them say if you don’t know the pH of your water, just assume a pH of 8.  I got a fancy electronic pH meter to tell me that my water was 7.95.
  4. Oh, get a small sample of the mash water and cool it down before you measure the mash pH.  Unless you are using the strips, which in my usage, seem unaffected by temperature.

Advanced:

This is where you will be making changes that only people beyond your friends and family will notice the difference.  I’m talking about beer judges and those with the refined tastes.  I once heard Gordon Strong say on a podcast about water that water chemistry is the difference between a 30 and a 40 in competitions.  I do not feel I am at this stage yet, but what I keep telling myself is that pH adjustment alone is 75% of what matters in water adjustment.  In another podcast Jamil Zainasheff made a comment that after all of his work in understanding water, he was unsure which component of water adjustment was the most effective and wondered if it was mostly the pH adjustment.  If you do get to this stage, salts and other water additions are necessary to eek the last bit of perfection out of your recipes and really highlight your ingredients.

Conclusion:

To paraphrase something John Palmer said at the water seminar: Just like how salt, pepper and other spices really bring out the flavor in foods, the same can be said about the additions and adjustments to brewing water.

I am currently experimenting with the various software spreadsheets available to add the theoretical adjustment ingredients and be done with it.  I’m hopeful this is doable and I will be checking back in with this theory at some point.  Of course you still want to measure again to make sure your additions had the intended effect, but it would be nice to have a predictable method.  In the BeerSmith podcast referenced above, Colin Kaminski even notes that he has it down well enough that he’ll make the adjustments to the water before hand and knows what to expect.  If it doesn’t turn out like he preferred, he brews again and essentially renames the alternate batch as a different beer.

I’ll go over water reports, filtering, measuring and adjusting water and review various software tools used to predict adjustments in future posts.

006-Water - Me and John

Like this post?

Consider making a small donation or share on your favorite social hangout.